Potential Vector In Biology

Francesco Troisi

¹Dipartimento di Fisica E. Fermi Università di Pisa

24 April 2020

Classical Electrodynamics

NATURAL PHENOMENA

Classical Electrodynamics (2)

MAXWELL EQUATIONS

•
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

•
$$\vec{\nabla} \cdot \vec{B} = 0$$

•
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\bullet \ \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

• Espressione dei campi mediante potenziali scalare (ϕ) e vettoriale (\vec{A})

•
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\bullet \ \vec{E} = -\vec{\nabla}\phi - \tfrac{\partial\vec{A}}{\partial t}$$

Electromagnetic waves

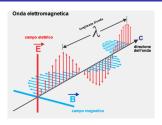


Figure: Plot of an em wave

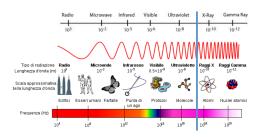


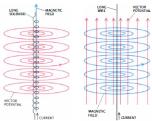
Figure: EM spectrum

Lagrangian and Hamiltonian model for a charged particle

- Both classical and quantum mechanical phenomena can be described starting with the determination of the Lagrangian and Hamiltonian function for a specific particle with mass m and charge q.
- Both in Lagrangian and Hamiltonian appear scalar and vector potential.

$$L = T - V = \frac{1}{2}m\ddot{r}^2 - q\phi + q\vec{A}\cdot\dot{\vec{r}}$$
 (1)

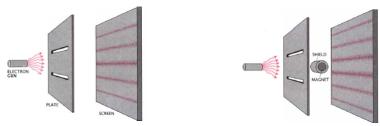
$$\vec{p} = \frac{\partial L}{\partial \dot{r}} = m\dot{\vec{r}} + q\vec{A} \tag{2}$$


$$H = \vec{p} \cdot \dot{\vec{r}} - L = \frac{1}{2m} |\vec{p} - q\vec{A}|^2 + q\phi \tag{3}$$

So, Hamiltonian, which correspond (almost) to the total energy of the charged particle, doesn't depend on fields, instead it depends on potentials, scalar and vector.

The Bohm-Ahronov effect

- The Bohm Ahrnov effect is a particular effect in which charges feel potential vector even when electromagnetic field is absent
- Difference of phase observed in an interference pattern of an electron gun going through an external path respect to a solenoid
- ullet We are considering the case which $\phi=0$. So the difference of phase depends only on potential vector.



VECTOR POTENTIAL FIELD (red lines) is compared with the magnetic field (blue lines) for a long solenoid (left) and a long wire (right). Each line represents its respective field at a given strength. The circulation of the vector potential field around a curve is enough to the magnetic field multiplied by the area bound by that curve.

Figure: Magnetic field and potential vector lines in a solenoid

Bohm Aharonov effect (2)

Difference of interference patterns between cases of absence and presence of magnetic field

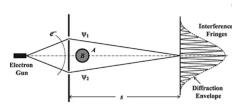


Figure: Interference path of an electron gun moving into two sits. The origin of interference is in the wave nature of electrons, as quantum mechanics states.

Consequences in biology: quantum coherence

 Potential Vector extends to a nearby large area, without transporting energy but just information, exerting a "fine influence", that alters the phase of the present coherent systems. (Giuliano Preparata and Emilio del Giudice)

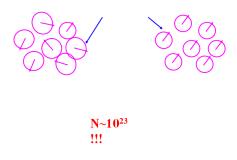


Figure: Difference between coherent and coherent system

Bibliography

D. Griffiths Introduction to Electrodynamics

Y. Aharonov And D. Bohm Significance of Electromagnetic potentials in quantum theory

Yoseph Imri and Richard Webb Quantum Interference and the Aharonov-Bohm Effect

THANKS FOR YOUR ATTENTION