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In addition to the electrogenic micro-organisms, e.g. bacteria, that can be found in communities
that are wired together in circuits carrying electrons in and out of biological cells, there are wireless
connections between micro-organisms that pass information to one another at a distance in virtue
of electromagnetic signals. One needs electromagnetic antennae to send or receive signals as they
pass information back and forth between living micro-organisms. We here discuss the properties of
DNA and RNA long polymer molecules regarding their utility as antennae. As well as emitting or
absorbing radiation photons these antennae also emit and absorb phonons, i.e. acoustic signals. The
coupling between sound waves and electromagnetic waves is very appreciable due to and described
by biological piezoelectricity. Biological phases of condensed matter also exhibit chiral symmetry
breaking, i.e. “handedness” symmetry breaking, between right and left handed electronic states.
Describing two spin components (say up and down) times two chirality components (say left and
right) ultimately requires four component electron wave functions as discovered by Dirac even if the
electrons are moving at velocities much less than light speed. Coupled with the quasi-one dimen-
sional nature of long polymer molecules this yields bound Bose condensed bound particle-hole pairs
constituting a Tomonaga-Luttinger liquid similar in some ways to the Bardeen-Cooper-Schriefer
Bose condensed bound electron pairs found in superconductors. One similarity is that transport
weak links in the Bose condensate fluid flow yield Josephson effects described by a quantum pen-
dulum, e.g. a sine Gordon field theory. The coherent phase in the Tomonaga-Luttinger liquid is
the difference between the right and left handed electronic phases as first demonstrated by Coleman
via the conversion of the massive Thirring model into a Josephson type pendulum model. The
complete theory of wireless communications between biological organisms is only beginning to be
developed. The basic DNA and RNA microbe antennae must be wired in nature as a coherent
phased antenna array for appreciable communication bit-rates radiated through large distances. Fi-
nally, acoustic and/or radio frequency electromagnetic radiation carrying sufficient communication
information should be of use medically as a possible alternative to chemical medicines and/or vac-
cines in the treatment of illness for a most recent example in the COVID-19 virus with its RNA
internal antenna.

PACS numbers: 87.18.Vf, 92.20.jb, 87.85.Xd, 87.85.Ox, 87.85.Ng

I. INTRODUCTION

There is a substantial literature describing the long
wavelength excitations of long chain organic polymer bio-
molecules by quantum field theories in one spatial dimen-
sion. The applications of quantum field theoretic statisti-
cal thermodynamics[1] to the biological mantra that pro-
teins are fabricated and controlled by mathematical com-
putational programs contained within DNA and RNA
macro-molecules[2] has thus far still been limited. Ulti-

mately the methods of quantum field theory should be
applicable to medicinal practice such as the development
of alternatives to standard vaccines applied to the mal-
adies of some DNA molecules within bacteria and some
RNA molecules within viruses. Our purpose is to pro-
vide some initial stages towards studying field theoretical
models. Applications to the RNA of the COVID-19 virus
would have some immediate importance.

The microscopic theory of the condensed matter
physics that can be used for understanding forces in bi-



2

ological matter must be based on the quantum electro-
dynamic interaction in continuous media[3]. At the clas-
sical level, the Lagrangian method employed for describ-
ing photons and collective electromagnetic field config-
urations is fairly well known[4]. Field quantization fol-
lows the canonical rules. For weak excitations in long
chain bio-molecules, the effective Lagrangians describe
bosons computed by functionally integrating out Fermion
electron interactions. Purely electron charge transport
can then be described by boson fields of the effective
Lagrangian employing topologically charged soliton ex-
citations. The mathematical properties of such soli-
ton solutions of the boson equations of motion are very
well established[5]. In what follows we consider elec-
tronic charge transport along DNA and RNA long chain
molecules responsible for inducing electromagnetic an-
tenna processes wherein very low frequency radio and
acoustic frequency phonons and photons[6] can be emit-
ted and absorbed[7].

For the case of bacteria, there exist electronic com-
munications within large communities because within a
single community different cells are biologically wired to
one another and circuit electrons pass through the biolog-
ical mesh wiring through cell walls. A single bacterium
with one or more connection wires allowing electrons to
pass across the cell wall is often called an electrogenic
bacterium. Studies of electrogenic bacteria communities
abound[9–12] and engineering applications are beginning.
For example, one may produce chemical batteries with
electromotive forces induced by bacteria[13]. However
the electricity in this case is maintained by wiring some
bacteria to other bacteria and/or by wiring bacteria to
chemical cell electrode surfaces.

Of central interest in this work is the wireless electro-
dynamic connections between bacteria and/or viruses.

In wireless connections, information is emitted or de-
tected in antennae that can radiate, respectively absorb,
electrodynamic radiation from a distance. In particu-
lar, our purpose is to discuss the antennae emission and
absorption properties of long DNA and RNA molecules.
Since these long polymer molecules are quasi- one dimen-
sional, the electrical currents that emit or absorb radia-
tion photons may be adequately described by one dimen-
sional quantum electrodynamic models and these shall be
essential to our general approach. In addition to photon
excitations in the DNA and RNA molecules, there exist
boson mechanical phonon oscillations, i.e. acoustic vibra-
tions. The phonon-photon interaction thereby describes
a piezoelectric effect in DNA and RNA molecules that oc-
curs due to the chiral or handedness symmetry breaking,
of the helical molecues that are double stranded for DNA
and single stranded for RNA. The symmetry breaking
must thereby be included in the one spatial dimensional
field theoretical models employed to describe biological
piezoelectricity[14, 15]. Ultimately this requires Dirac
electron matrices that have dimension four; i.e. two spin
states times two chiral states. Employing one spatial di-
mensional Dirac spinors, these four states can be handled

two states at a computational time.
The notion of describing electron charged currents

in one spatial dimensional models with boson fields is
very well known and constitutes the physical basis of
Tomonaga-Luttinger fermion liquid models[16–18]. A
central physical point is that a locally conserved charge in
a model in one space plus one time dimension obeys the
local charge conservation law ∂µJ

µ = 0. In field theories
with one spatial dimension

∂λ(z, t)
∂t

+
∂I(z, t)
∂z

= 0, (1)

wherein λ(z, t) and I(z, t) represent, respectively, the
charge density per unit length and the current. For the
problem of wireless communications between different
DNA or RNA long polymer helical molecules, I repre-
sents the antennae current along the molecule emitting
and absorbing radiation. The general solution to the local
charge conservation Eq.(1) involves the dipole moment
per unit length Q(z, t) defined to obey

I(z, t) =
∂Q(z, t)
∂t

and λ(z, t) = −∂Q(z, t)
∂z

. (2)

Thus, the electrical currents in one plus one dimensional
field theories can be described by a single scalar Boson
field Q(z, t) having physical dimension of charge regard-
less of the fermion field dynamics that may be at the root
of the physical motions.

A. Cable Photons in DNA and RNA Chains

Short ranged heavy massive Boson exchange can lead
in the vacuum to a point-like Fermion interaction be-
tween currents. Boson masses in biological matter are
here considered massive if M(heavy boson)c

2/e� millivolt.
The semiconducting electrons in electrodynamic coherent
water[24] domains set the voltage scale of millivolts for
the electronic semiconducting energy gaps in biology. For
quantum field theories in one spatial dimension, the pho-
tons can travel along the molecules as E waves or TM
cable modes or as B waves or TE cable modes. TE and
TM mdes along one dimensional cables are massive and
exchange of such photons in one spatial dimension lead
the Fermi electronic point like or at least short ranged in-
teraction. The vacuum interaction depends on the squre
of the current JµJµ = I2 − c2λ2.

Since the long DNA or RNA chains reside in solution
there is a capacitance per unit chain length ε and an in-
ductance per unit chain length µ, the condensed matter
Fermi current-current interaction is a simple TEM mass-
less photon. In Gaussian electromagnetic units, there is
a zero mass TEM cable mode Lagrangian as grown out of
the biological matter point-like Fermi interaction in one
spatial dimension

LTEM =
1
2

∫
L

[
µ

c2
I2 − 1

ε
λ2

]
dz,
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LTEM =
1
2

∫
L

[
µ

c2

(
∂Q

∂t

)2

− 1
ε

(
∂Q

∂z

)2
]
dz,

v =
c
√
µε

wherein v = TEM photon velocity. (3)

The quantum electrodynamic zero mass photon quanti-
zation from the Lagrangian Eq.(3) is canonical and de-
scribes the Goldstone boson for the ordered Tomonaga-
Luttinger liquid of electrons.

B. Polymer Chain Thermodynamics

In Sec.II the statistical thermodynamics of a long
polymer molecule having energy U , entropy S, length
L, dipole moment P and chemical composition particle
numbers N1, · · · ,Nf will be discussed in terms of the
complete extensive scaling thermodynamic function

U = U(S,L,P,N1, · · · ,Nf ),
λU = U(λS, λL, λP, λN1, · · · , λNf ),

dU = TdS + τdL+ EdP +
f∑
a=1

µadNa,

U = TS + τL+ EP +
f∑
a=1

µaNa, (4)

wherein T, τ, E and µ1, · · · , µf represent respectively the
temperature, long molecule tension (negative compres-
sion), electric field tangent to the molecule axis and
chemical potentials. In terms of intensive quantities per
unit length

U = uL, S = sL, P = QL, Na = ΓaL,

u = Ts+ τ + EQ+
f∑
a=1

µaΓa,

−dτ = sdT +QdE +
f∑
a=1

Γadµa ,

du = Tds+ EdQ+
f∑
a=1

µadΓa . (5)

The complete thermodynamic intensive energy per unit
length function u(s,Q,Γ1, · · · ,Γf ) ≡ u(s,Q,Γ) deter-
mines the dipole moment per unit length function
Q(s, E,Γ),

Q = −
(
∂τ

∂E

)
T,µ

= −
(
∂w

∂E

)
s,Γ

,

w(s, E,Γ) = inf
Q

(u(s,Q,Γ)− EQ) ,

dw = Tds−QdE +
f∑
a=1

µadΓa . (6)

The thermodynamic equations of state may be computed
from field theoretical models in one spatial z plus one

temporal t dimension wherein the spatial coordinate z
represents the distance along the axis of the molecule.
The current Eqs.(1) and (2) along the molecular axis is
completely determined by Q obeying in thermodynamics
Eq.(6). Finally, the full Lagrangian for molecular poly-
mer antennae currents read

Lelectronic[Q] =
(

1
2ε

)
×∫

L

[
1
v2

(
∂Q

∂t

)2

−
(
∂Q

∂z

)2

− u(s,Q,Γ)

]
dz. (7)

The quantum electrodynamic antenna photon quantiza-
tion from the Lagrangian Eq.(7) is canonical. Eq.(7)
holds true in virtue of Eqs.(3) and (5). The above La-
grangian Eq.(7) is a central result of this work on DNA
and RNA antennae. Ordinary Helmholtz linear electric
dipole antennae or loop magnetic dipole antennae are
designed employing the physics of linear electromagnetic
equations in matter as in the Lagrangian Eq.(3). Na-
tures biological antennae design has been more inventive
than was Helmholtz employing nonlinear effects yield-
ing electronic currents for emitting and absorbing pho-
tons described by soliton transport. Previously this ap-
proach has proved successful in describing polyacetylene
and magnetic dipole rings of (CH)n of the benzene ring
(n=6) type.

Finally, additional dissipation processes increasing en-
tropy s in the antennae will give rise to finite lifetime
effects for the non-linear collective photon solitons. How-
ever these lifetimes become limited to large times by the
semiconductor soliton topological stability which amount
to identifying soliton fundamental homotopy group kinks
as physical electronic charges. Some discussion of photon
and phonon absorption is given in Sec.IV.

C. Field Theoretical Models

The simplest example of the field theoretical mod-
els applied to a long organic polymer molecule involved
trans-polyacetylene whose chain of n links has the chem-
ical formula (CH)n is discussed in Sec.III and pictured
in FIG.1.

The fermion electronic model in one spatial dimension
involves the massive Thirring model with a Dirac spinor
band kinetic energy plus the Fermi point-wise current-
current electron interaction. This point-like Fermi in-
teraction can be renormalized only in a one spatial di-
mension field theory. Such a Fermion model can also
be “bosonized” as noted by Tomonaga[16], Luttinger[17]
and Mattis and Lieb[18]. A relativistic view of the
renormalized massive Thirring model in one spatial di-
mension was discussed in great mathematical detail by
Coleman[19] who proved the “bosonized” equivalence
to the sine-Gordon field theory in one spatial dimen-
sion. The connection between the soliton in the quan-
tum field theoretical sine-Gordon model and electronic
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FIG. 1: Shown is the molecular structure of a polyacetylene
chain (CH)n of n links. Each carbon atom bonds to a neig-
boring carbon atom alternating between one and two bonds
as in · · · − C = C − C = C − C = C − · · ·. The fourth
Carbon bond is attached to a Hydrogen atom. A chain of six
links completed as a hexagon represents C6H6 = (CH)6, i.e.
a benzene ring. A chain completed into a ring or loop acts
as a molecular magnetic dipole antenna. Such would also be
true of a polymer DNA loop in bacteria or and RNA loop in
a virus.

charge transport in polyacetylene polymer chains was dis-
cussed in the work on the SSH model[20, 21] (Su, Schri-
effer, Heeger). The nature of the soliton Fermion num-
ber was explored by Jackiw and Rebbi[22]. In our work
the soliton has the charge of one electronic charge as de-
manded by the connection between local charge conser-
vation and gauge invariance. The soliton structure has
been reported observed[23]. The Coleman sine-Gorden
equivalence is discussed in Sec.III

D. The Mechanics of Damped Slinky Modes

The two helix DNA model and the single helix RNA
model mechanically act similarly to a quantum mechan-
ical molecular toy helical slinky. The known mechanical
modes of motion of such a slinky is usually called worm-
like in conventional studies[30] of long polymer chains.
The statistical mechanics[27] of the slinky or wormlike
motions wherein the long helical biological molecules
clump into balls of string or are knitted and folded into
sheets of polymer protein material is well studied. These
have long been applied to describe biological compaction
essential for the central biological mantra of how DNA
and RNA produce proteins. These compaction modes
are discussed in Sec.??.

The differential geometry of the path of a long spatial
winding polymer chain is described by giving the points
on a polymer path[28] as a function of arclength s,

r = r(s) wherein ds2 = dr · dr. (8)

A triad of unit vectors, one tangent t and two normal
n and b = t × n, create a moving reference frame triad
of unit vectors (t,n,b) along the curved molecular path.
The rotation of the unit orthonormal vector triad obeys

Helix with Constant Curvature and 
Constant Torsion   

FIG. 2: Shown is the helix of radius R and pitch h generated
by constant curvature and constant torsion as in Eq.(10) be-
low. R is the radius of the helical cylinder and for every 2π
rotation around the cylinder axis the curve rises a height h.

the equations of Frenet and Serret

d

ds

( t
n
b

)
=

( 0 κ 0
−κ 0 τ
0 −τ 0

)( t
n
b

)
, (9)

wherein κ is the curvature of the molecule and τ is the
torsion of the molecule. In order to understand the mean-
ing of curvature and torsion, conseder the case wherein
the curvature and torsion are uniform along the curve,
i.e.

κ =
1
R
, τ =

2π
h

(10)

for the case that R = const. and h = const. generates a
helix as shown in FIG.2

In the Kratky-Porod model, also known as the worm-
like chain model[30–32], the DNA and/or RNA the poly-
mer helices wiggle about like worms in the fluid solute
environment. The energy of a worm-like chain or more
briefly a deformed slinky-wormlike polymer is described
by the energy

Udeformation = τ̃L+
Y
2

∫
L

[
ξ41κ(s)2 + ξ42(τ(s)− τ0)2

]
ds, (11)

wherein the tension τ̃ > 0 or compression τ̃ < 0 in the
first term on the right hand side of Eq.(11) here has an
overhang τ̃ only to distinguish it from torsion τ . This
first term treats the wormlike slinky motions as in string
theory with the long chain molecular “string” embedded
in the physical three spatial dimensions. The second two
terms on the right hand side of Eq.(11) give rise to rigid-
ity in transverse mechanical vibrations and torsional (or
angular) mechanical vibrations that affect the mechani-
cal vibrations giving rigidity to the polymer chain. The
Young’s modulus is denoted by Y and the Poisson ratio
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is denote by σ. Here we are applying classical elasticity
theory[29]. In bulk solids, there is one longitudinal sound
wave velocity and two modes of transverse sound velocity
as given by

vlong =

√
Y(1− σ)

ρ(1− σ)(1− 2σ)
Bulk Longitudinal,

vtrans =

√
Y

2ρ(1 + σ)
Bulk Transverse, (12)

Finally, the persitance lengths of the polymer rigidity will
be denoted by ξj .

Helical DNA and RNA Curvature and 
Torsion in Wormlike Slinky Modes Refer 
to the Bending Curve Center Axis of the 

Molecule from Transverse Motions    

FIG. 3: Shown above schematically are two longitudinal
modes and two transverse modes. The longitudinal modes
are determined if the “center line” of the helices is straight.
(a) The two longitudinal degrees of freedom can be taken as
R(z, t), the local radius of the straight coil and h(z, t) the
local pitch of the straight coil. The z-axis is a straight line.
The physical picture of the two longitudinal modes is linear
compression and local rotational displacement both with an
associated Poisson ratio. (b) The two transverse modes have
curved central lines with arc length ds and distortion energy
Eq.(11).

There are four modes of mechanical waves on heli-
cal polymer molecules in a worm like chain as shown
in FIG.3. Their exists four kinds of mechanical waves
of interest: (i) There are two longitudinal modes with a
straight line z-axis as the center of of the coils. There is
compressional sound in a cylinder and rotational sound
due to torsion. (ii) There are two transverse degrees of
freedom for the now curved central axis of the coil as in
Eq.(11).

Associated with bulk polymer mass density ρ is a longi-
tudinal persistance length ξl defined thermodynamically
by

ρ1 ≡

(
f∑
a=1

maΓa

)
= ρξ2l (13)

wherein ma is the mass of chemical species a on the poly-
mer chain and ρ1 is the mass per unit length of the chain.

For small oscillations in the elastic strain, the first lon-
gitudinal compressional mode in a thin straight worm-
slinky has a sound velocity spectrum

ω = vlk compressional vl =

√
Y
ρ
. (14)

The second straight central axis mode is torsional with
spectrum

ω = Dlk
2 torsional Dl = vlξl. (15)

Typically, longitudinal compressional mode velocities
vl ∼ 2 × 105 cm/sec, while persistence lengths are ap-
proximately the coherent domain sizes in water[24, 25],
ξ ∼ 5 × 10−6 cm. Thus Dl ∼ 1 cm2/sec. Note the elec-
tron quantum of circulation Del = (h̄/m) ≈ 1.16 cm2/sec
contributing to the free electron spectrum E = h̄2k2/2m.
The agreement Del ∼ Dl is not fortuitous. Finally, the
transverse bending modes for the wormlike-slinky have
the spectrum

ω = Dtk
2 transverse Dl = vtξt. (16)

which is degenerate if the staight line axis does not sense
an assymetry in the rotational moments of inertia. Here
ξt is the transverse persistance length. These frequencies
quadratic in the wave number k are comparable to free
electron Bohr transition frequencies, h̄ωfi = Ef − Ei,
wherein E = h̄2k2/2m, obey

ωfi =
1
2
Del [(kf + ki)(kf − ki)] with Del =

h̄

m
. (17)

The similar orders of magnitude Dl ∼ Del are not fortu-
itous. Young’s modulus describes the internal pressure-
energy as determined by the electron Pauli exclusion
principle required for stable matter when Coulomb forces
are of microscopic importance.

E. Electric and Magnetic Dipole Antennae

In Sec.V the electric dipole antenna that constitutes a
linear axis DNA or ENA chain polymer molecule subject
to an electric field is described by the massive Thirring -
sine Gordon Lagrangian in a driving electric E field

Lelectronic[Q] =
(

1
2ε

)
×∫

L

[
1
v2

(
∂Q

∂t

)2

−
(
∂Q

∂z

)2
]
dz −∫

L

[
h̄$

(
1− cos

(
2π
Q

e

))
− EQ

]
dz, (18)

corresponding to the equation of motion[
ε

v2

(
∂

∂t

)2

−
(
∂

∂z

)2
]
Q+(

2πh̄$
e

)
sin
(

2π
Q

e

)
= E. (19)
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If the driving electric field depends only on time

E(t) = −1
c
Ȧ(t) and P = LQ(t), (20)

then only the total electric dipole moment P comes into
the equations of motion. In the electric dipole limit
we thereby have the ordinary differential equation cor-
responding to a voltage V (t) driven pendulum with a
current output I(t) = Q̇(t),

L

c2
Q̈(t) + Vc sin

(
2π
Q(t)
e

)
= V (t). (21)

wherein the antenna inductance L = µL, the driving
voltage V (t) = E(t)L and the critical voltage is defined
Vc = (2πh̄$/e)L.

If the electron oscillations on the straight axis of the
have a finite dissipation increasing the molecular entropy
by heating, then phenomenologically a resistance R may
be added to the electric dipole antenna model according
to I(t) = Q̇(t),

L

c2
Q̈(t) +RQ̇(t) + Vc sin

(
2π
Q(t)
e

)
= V (t). (22)

For the moment neglecting resistance, the driven elec-
tric dipole antenna as a quantum electrodynamic circuit
described by the ordinary Lagrangian

Λ(Q̇,Q) =
L

c2
Q̇2 +

LAQ̇
c(

eVc
2π

)[
1− cos

(
2π
Q

e

)]
. (23)

in virtue of Eq.(20).
The Hamiltonian operator corresponding to the La-

grangian Eq.(20) is canonical

H(Φext) =
1

2L

(
−ih̄c ∂

∂Q
− Φext

)2

+
(
eVc
2π

)[
1− cos

(
2π
Q

e

)]
. (24)

Here the driving vector potential is A = Φext/L. By
wrapping up the linear electric dipole antenna into a loop
one obtains the magnetic dipole antennae with a total
magnetic moment given by a current area product.

In detail, the external magnetic flux through the loop
is given by

Φext =
∮

A · dr =
∫
L
Ads. (25)

The Schrödinger equation for the loop is given by

ih̄
∂ψ(Q, t)

∂t
= H(Φext)ψ(Q, t) (26)

wherein the Hamiltonian is identical to the electric dipole
antenna Hamiltonian Eq.(24); However, the magnetic

dipole antennae boundary condition defining the geomet-
rical meaning of “loop” is the magnetic dipole boundary
periodic condition

ψ(Q+ e, t) = ψ(Q, t) magnetic dipole loop. (27)

In particular, as a consequence of Eq.(27) the energy
eigenvalues are periodic in external magnetic flux, i.e.

H(Φext)ψn(Q) = En(Φext)ψn(Q),
ψn(Q+ e) = ψn(Q),

En(Φext + Φ0) = En(Φext), (28)

wherein the flux quantum is given by

Φ0 =
2πh̄c
e

. (29)

According to present international agreements on SI
units wherein the electromagnetic charge conversion is
exactly 1 emu ≡ 10 Coulomb and 1 Tesla ≡ 104 Gauss
we have the exact three unit definitions

c ≡ 2.99792458× 1010 cm
sec

,

2πh̄ ≡ 6.62607015× 10−27 erg sec,
e

c
≡ 1.602176634× 10−20 emu. (30)

The flux quantum is then

Φ0 ≈ 4.135667697× 10−7 Gauss cm2. (31)

Many distinctive properties of DNA or RNA molecular
antennae follow from the periodicities of the circulating
currents

In(Φext) = In(Φext + Φ0). (32)

Eq.(32) follows from

In(Φext) = −cdEn(Φext)
dΦext

(33)

in virtue of Eq.(29). The magnetic flux periodicity of cir-
culating currents in molecular dipole antennae arises out
of electrodynamic gauge invariance and the Bohm Aha-
roniv effect and is likely to surpass the accuracy of par-
ticular model Hamiltonians such as ours playing a strong
role wireless transmission of information between DNA
and/or RNA molecules.

II. STATISTICAL THERMODYNAMICS

Of interest here are electrical and mechanical vibra-
tions that quantize into photons and phonons in the usual
manner. Photon-phonon conversions can and do take
the form of piezoelectricity that go into the design of
ultrasound emitters and absorbers[33]. A simple under-
standing of piezoelectricity can be obtained by the gen-
eral principles of statistical thermodynamics. The role of
this reasoning is of use for understanding biological piezo-
electricity as it occurs in long stands of DNA and RNA
due to the lack of chiral (handed) symmetry in helical
molecules.
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A. Quartz Crystal Ultrasound

To get ultrasound generators from a quartz crystal it
is sufficient to cleave the crystal so that a given crystal
plane appears parallel on two sides of the quartz sample.
Then deposit two metallic films, one on each of the op-
posite flat sides of the quartz sample forming a circuit
capacitor depositing equal and opposite charges on the
two metallic plates. The thermodynamic equations of
state of the capacitor follow from the fundamental law

dU = TdS + VdQ+ FdX, (34)

wherein S, Q and X represent, respectively, the capac-
itor entropy, charge and quartz crystal plane displace-
ment and T,V, and F represent, respectively, the capac-
itor temperature, voltage and force component parallel
to the plane displacement that the metallic film exerts
on the quartz crystal. Alternatively, one may employ the
capacitor enthalpy

W(S,V, X) = minQ [U(S, Q,X)− VQ] .
dW = TdS −QdV + FdX. (35)

The capacitances at constant displacement X and at con-
stant force F are defined respectively as

CX =
(
∂Q

∂V

)
S,X

and CF =
(
∂Q

∂V

)
S,F

. (36)

Employing thermodynamic derivative identities(
∂Q

∂V

)
S,F

=
(
∂Q

∂V

)
S,X

+
(
∂Q

∂X

)
S,V

(
∂X

∂V

)
S,F

,

CF = CX −
(
∂Q

∂X

)
S,V

(
∂X

∂F

)
S,V

(
∂F
∂V

)
S,X

,

CF = CX +
Λ2
S

KS
, (37)

wherein the adiabatic piezoelectric coefficient is defined
by a Maxwell relation for the enthalpy Eq.(35)

ΛS =
(
∂Q

∂X

)
S,V

= −
(
∂F
∂V

)
S,X

. (38)

The thermodynamic adiabatic static Hook’s law spring
constant for the vibrational quartz mode is defined

KS =
(
∂F
∂X

)
S,V

. (39)

The central result of this section is that a measured ca-
pacitance of the quartz filled capacitor is a circuit parallel
connection between two capacitors: (i) a capacitance CX
wherein the position of the vibrational mode is clamped
and (ii) an elastic capacitance

CF = CX + Celastic ,

Celastic =
Λ2
S
KS

, (40)

adding capacitance for the parallel circuit connection.
Using a damped harmonic oscillator model for the quartz
vibrational phonon mode, yields a complex frequency de-
pendent elastic electrical engineering capacitance

MδẌ(t) +RδẊ(t) +KSδX(t) = δF(t),

Celastic(ω) =
Λ2
S

KS − iωR− ω2M
,

Celastic(ω) =
ω2

0Celastic

ω2
0 − iΓω − ω2

. (41)

wherein M is the mass of the vibrational mode and R
is the mechanical acoustic impedance of the vibrational
mode. The frequency ω0 of the quartz phonon mode is
and the inverse phonon lifetime τ−1

phonon = Γ is determined
in mechanical engineering terms as

ω0 =

√
KS
M

and Γ =
R
M

. (42)

The frequency dependent circuit admittance of the fix
displacement capacitance connected in parallel with the
elastic mode capacitance is

Y (ω) = −iω[CX + Celastic(ω)],

Y (ω) = −iω
[
CX +

ω2
0Celastic

ω2
0 − iΓω − ω2

]
,

<eY (ω) = ω2
0Γ
[

ω

(ω2 − ω2
0)2 + ω2Γ2

]
Celastic . (43)

If a voltage source Vω at frequency ω is placed across
the quartz crystal filled capacitor, then the dissipated
power P (ω) = |Vω|2<eY (ω) is mostly due to to a sharp
phonon peak as described by Eq.(43). The dissipative
power mostly goes into phonon radiation from the quartz
mechanical oscillator that becomes a source of ultrasound
at a sharp frequency. Let us now apply similar thermo-
dynamic arguments to long DNA and RNA molecules as
we have above reviewed for standard ultrasonic crystal
sources.

B. DNA and RNA Piezoelectricity

For describing the piezoelectric effect in DNA and
RNA molecules, start from the dipole moment enthalpy

W̃ = min
Q

[U(S,L,P,N1, · · · ,Nf ),−EP] ,

W̃ = W̃(S,L, E,N1, · · · ,Nf ),

dW̃ = TdS + τdL − PdE +
f∑
a=1

µadNa,

W̃ = TS + τL+
f∑
a=1

µaNa. (44)
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With N =
∑f
a=1Na intensive per constituent particle

are defined as

xa =
Na
N

,

f∑
a=1

xa = 1,

w̃ =
W̃
N

, s̃ =
S̃
N

, l =
L̃
N

, p̃ =
P̃
N

= lQ,

w̃ = T s̃+ τ l +
f∑
a=1

µaxa, (45)

in virtue of which

dw̃ = Tds̃+ τdl − p̃dE +
f∑
a=1

µadxa. (46)

1. Static Piezoelectricity

The static adiabatic piezoelectric coefficient of a long
polymer molecules is defined as

λs̃ =
(
∂τ

∂E

)
s̃,l,x

= −
(
∂p̃

∂l

)
s̃,E,x

, (47)

wherein a Maxwell relation implicit in Eq.(46) has been
employed. Two molecular polarizability coefficients may
be defined (i) at constant molecular tension τ and (ii) at
constant molecular length l; They are, respectively,

ατ =
(
∂p̃

∂E

)
s̃,τ,x

and αl =
(
∂p̃

∂E

)
s̃,l,x

. (48)

The difference is by partial differentials is evidently

ατ = αl +
(
∂p̃

∂l

)
s̃,l,x

(
∂l

∂E

)
s̃,τ,x

,

ατ = αl −
(
∂p̃

∂l

)
s̃,l,x

(
∂l

∂τ

)
s̃,E,x

(
∂τ

∂E

)
s̃,l,x

,

ατ = αl +
λ2
s̃

κs̃
, (49)

wherein the hook law adiabatic spring constant κs̃ per
molecule for a long molecule is defined

κs̃ =
(
∂τ

∂l

)
s̃,E,x

. (50)

The fundamental theorem of thermodynamics for how
piezoelectricity in long DNA or RNA molecular polariz-
ability is thereby

ατ = αl + αelastic wherein αelastic =
λ2
s̃

κs̃
, (51)

plays the same role in long polymer piezoelectric physics
that Eq.(40) plays for quartz piezoelectricity.

Classical thermal fluctuations in the molecular tension
obey

∆τ2 =
kBT

N

(
∂τ

∂l

)
s̃,E,x

= kBT
(κs̃
N

)
,

∆τ2 = kBT

(
∂τ

∂L

)
S,E,N1,···,Nf

= kBTKS (52)

wherein the overall adiabatic spring constant of the
molecule is inversely proportional to the number of con-
stituent molecules KS = κs̃/N On the other hand the
mode mass for a homogeneous slinky-worm oscillation is
extensive M = Nm0 wherein m0 is of the order of the
mean molecular mass. This means that the frequency of
the homogeneous compression mode is given by

Ω =

√
KS
M

=
ω0

N
→ 0 as N →∞. (53)

Given the virtually zero frequency of the homogeneous
longitudinal dissipation, the mode is completely dissipa-
tive.

2. Vibrational Dissipation

For mechanical vibrations coupling into antennae cur-
rents via piezoelectric coefficients, an engineering ap-
proach may generalize the static quartz oscillator cou-
pling Eq.(40) that in dynamic situations reads as Eq.(41).
The close analogy is that the dynamic engineering dy-
namical version of Eq.(51) is given by

ατ = αl + αelastic

∑
j

[
fjω

2
j

ω2
j − iωΓj − ω2

]
, (54)

wherein the sum is over mechanical modes described by
damped harmonic oscillators with oscillator strengths
fj > 0 that sum to unity, i.e.

∑
j fj = 1. In Eq.(54),

ωj represents the mechanical resonance frequency of the
phonon and Γj represents the transition rate per unit
time per unit time that the phonon is absorbed as heat
energy into other degrees of freedom. One may intro-
duce a damping force correlation time τj of the random
force from these other degrees of freedom that damp the
mechanical oscillation according to Fermi’s golden rule

Γj =
2π
h̄
|h̄ωj |2

( τj
2πh̄

)
,

Γj = ω2
j τj ⇒

Γj
ωj

= ωjτj . (55)

Eq.(54) describes how the mechanical modes enter into
the electrodynamic properties of DNA and RNA anten-
nae only if the modes are lightly damped ωjτj � 1. If the
phonon modes are very highly damped by viscous forces
then Eq.(54) is nor adequate. The physical principles
follow below.
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Consider the original Stokes problem i.e. damping
from a solid surface contact with a viscous fluid. Consider
the formally infinite surface problem wherein the solid is
in the half space z < 0 and the viscous fluid is in the
half space z > 0 and the oscillation of the solid surface
is in the x-direction. If vx(z, t) is the only non-zero fluid
velocity component in the fluid mechanical NavierStokes
equations, then the velocity V (t) and the force per unit
area that the fluid exerts on the solid surface F (t) obey,
respectively,

V (t) = lim
z→0+

vx(z, t) and

F (t) = −η lim
z→0+

(
∂vx(z, t)
∂z

)
. (56)

The velocity diffusion equation with viscosity η and mass
density ρ is here written within the fluid as

ρ
∂vx(z, t)

∂t
= η

∂2vx(z, t)
∂z2

. (57)

In virtue of fractional derivative identities[34] one may
take the “operator square root” of Eq.(57)√

ρ
∂

∂t
vx(z, t) =

√
η
∂vx(z, t)
∂z

(58)

yielding the force per unit area as a functional of the
slinding surface velocity

F (t) = −√ρη

[√
∂

∂t

]
V (t),

F (t) = −√ρη

[√
1
π

∫ ∞
0

ds√
s
e−s∂/∂t

]
V (t),

F (t)
ρ

= −
√
ν

π

∫ ∞
0

ds√
s
V (t− s) wherein η = ρν, (59)

in virtue of Eq.(56) and the evaluation of the integral√
πa =

∫∞
0
e−asds/

√
s.

The drag force per unit surface area F (t) is a non-
local in time functional of the surface velocity V (t) for
an incompressible fluid with kinematic viscosity ν. The
kinematic viscosity represents the diffusion of liquid vor-
ticity at a rate in water of

ν ≈ 10−2 cm2

sec
= 104 Hz× (10 micron)2 (water). (60)

For distance ∼ 10 micron say within a biological cells
for many types of cells, the mechanical modes exhibit
strongly viscous damping for frequencies ω < 10 KHz.
The strong damping leads to fractional exponent in the
imaginary part of the dielectric response ∼ ω−1/2 as
ω → 0. Confinement geometries more generally lead to
dynamic fractional exponents ∼ ω−z as ω → 0 even in
pure water wherein the extremely high dielectric response
as ω → 0 has a domain size scale of ordered water[24, 25].

III. MASSIVE QED THIRRING MODEL

The mass term employing Dirac spinors yields the in-
varient energy density

umass = −melectronc
2ψ̄ψ (61)

wherein ψ is the electron wave function. If the Dirac
matrices are written in the representation in which the
left and right chiral matrix is diagonal, then the notion
of mass comes from matrix elements that connect right
to left chirality. In one spatial dimension, fix the spin
and consider the two element electron wave function for
left and right handed electrons,

ψ =
(
ψR
ψL

)
wherein ψ̄ψ = ψ∗RψL + ψ∗LψR. (62)

If the left and right amplitudes have phases,

ψR,L = |ψR,L|eiϑL,R ≡
√
npair

2
eiϑL,R ,

ψ∗RψL + ψ∗LψR = npair cos(ϑR − ϑL) (63)

wherein npair = (1/2)|ψRψL| are the number of bound
particle-hole pairs per unit length, then the phase differ-
ence implicit in Eq.(62)

ϑR − ϑL = 2π
Q

e
, (64)

yields the energy density

umass = −h̄$ cos
(

2π
Q

e

)
. (65)

in virtue of quantum phase interference between the
left and right handed chirality states. In Eq.(66),
melectronc

2npair = h̄$. A convention adds a constant
to this energy to make a model energy density u(Q),

u(Q) = h̄$

[
1− cos

(
2π
Q

e

)]
, (66)

to employ in the Coleman sine Gordon Lagrangian
Eq.(18). This completes our derivation of Coleman’s re-
sult that a massive Thirring Fermion model of electrons
in a quasi-linear system is equivalent to a sine Gordon
Boson model.

IV. SLINKY DAMPED MECHANICS OF THE
LONGITUDINAL SOUND MODE

Here wer consider the viscous damping of a pure lon-
gitudinal wave in a slinky helix. The viscous damp-
ing is mainly due to the electronic viscosity that is in
turn caused by the electrical conductivity. The molec-
ular ultrasonoic phonon ansorption is thereby due to
the electronic Landau-Fermi liquid consuctivity in a
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bulk metal[35] but is here is due to the Tomonoga-
Luttinger[16–18] liquid in DNA or RNA long helical-
slinky polymer molecules. Thermodynamics as dictated
by Sec.II B is determined by

dũ = Tds̃+ τdl + Edp̃+
f∑
a=1

µadxa,

dw̃ = Tds̃+ τdl − p̃dE +
f∑
a=1

µadxa, (67)

yielding the thermodynamic identity

κs̃ =
(
∂τ

∂l

)
s̃,E,x

,

κs̃ =
(
∂τ

∂l

)
s̃,p̃,x

+
(
∂p̃

∂l

)
s̃,E,x

(
∂τ

∂p̃

)
s̃,l,x

,

κs̃ = κs̃l +
(
∂p̃

∂l

)
s̃,E,x

(
∂τ

∂E

)
s̃,l,x

(
∂E

∂p̃

)
s̃,l,x

,

κs̃ = κs̃l −
(
∂τ

∂E

)2

s̃,l,x

(
∂E

∂p̃

)
s̃,l,x

,

κs̃ = κs̃l −
(
λ2
s̃

αl

)
. (68)

To get the frequency dependent hooks law force constant
for a uniform compression or extension in electrical en-
gineering terms, one extends Eq.(68) to the upper half
complex frequency plane ζ = ω + i$ wherein $ > 0,

κ(ζ) = κs̃,l −
[
λ2
s̃

αl(ζ)

]
. (69)

In terms of the electrical engineering intensive impedance
Z(ζ) of the polymer DNA or RNA chain,

Z(ζ) =
i

ζnelα(ζ)
,

κ(ζ) = κs̃,l + iζnelλ
2
s̃Z(ζ), (70)

wherein nel is the electron density per unit length of
chain. The ultrasonic attenuation of the chin molecule
is determined by

=mκ(ω + i0+) =
(
nelλ

2
s̃

)
ω<eZ(ω + i0+) (71)

that constitutes the mathematical expression of the phys-
ical fact that the piezoelectric coupling allows one to see
in the longitudinal sound attenuation that observable by
the electrical antenna impedance Z(ω + i0+).

V. MICROBE COMMUNITY ANTENNAE

Microbial communities in the form of films adsorbed on
solid substrates live much longer on insulating surfaces
than on conducting metallic substances. For example, a

community of COVID-19 viruses live typically for a few
days on an insulator surface but only a few hours on a
metallic surface. This fact makes metallic material inser-
tions of for example copper into cloth hospital face masks
of some utility. Microbial communities of electrogenic
bacteria adsorbed on a chemical battery cathode employ
an insulating adsorption surface although the battery
lead cables are eventually metallic. A working hypothesis
is that the community of microbes require for healthy liv-
ing that DNA and RNA antennae within the community
constitute a coherent phased array. The dissipative eddy
currents within a metal surface will lesson the coherence
of the array of antennae. Since the art of experimen-
tal biochemistry is closely entwined with the art of fine
cooking, those experienced in baking breads should take
note that baking yeast has DNA antennae of compara-
ble size to bacteria. Spectroscopic measurements with a
radio frequency spectrum analyzer while living processes
are under way would be of interest as would other stan-
dard Josephson array measurements long understood for
superconducting arrays.

VI. CONCLUSIONS

Electrogenic micro-organisms live within environments
wherein they are wired to one another or are wired to
environmental surfaces. Electronic currents can flow
through these wires into and out of biological cells
through the cell walls. Of interest in the work described
above was the wireless communication that can be ra-
diated from a distance into and out of biological cells
wherein the DNA or the RNA molecules can act as an-
tennae that receive or emit radio frequency electromag-
netic signals. Alternative to the chemical information
carried in the DNA or RNA letter coding, communica-
tion information can be carried from a distance in the
form of thermodynamic radiation signal entropy. Due to
biological piezoelectricity, the electromagnetic radiation
is appreciably coupled into ultrasonic acoustic radiation.
Thus electromagnetic as well as acoustical spectroscopy
is evidently possible.

The helices or double helices, respectively, within RNA
and DNA exhibit chiral symmetry breaking (handedness)
as must the electronic energy structure. The electronic
structure must also properly require chiral symmetry
breaking. The electron as an elementary particle car-
ries two possible spin states ↑ or ↓ as well as two chiral
states right R or left L. Thus we argued, as discovered by
Dirac, the electron requires a four component spinor for
its description. These four components are required for
describing chiral symmetry breaking even if the electrons
have kinetic energies small on the scale of the electron
rest mass energy.

DNA and RNA as long polymer molecules are quasi-
one dimensional. This, coupled with the chiral symmetry
breaking, suggested that the electronic structure has the
structure of a Tomonaga-Luttinger liquid wherein there
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particle-hole bound states. The bound state of a elec-
tron particle-hole pair is a Boson and the Tomonaga-
Luttinger liquid is a condensation of these Bosons in a
manner closely analogous to the Bose condensation of
particle-particle or hole-hole bound states in a supercon-
ductor. In a superconductor the phase of the Bose pair-
ing field gives rise to Josephson effects. In the biologi-
cal Tomonaga-Luttinger electron liquid we employed the
phase difference between right and left handed electron
components to describe the quantum coherence leading
to Josephson effects. In both cases the Josephson effects
lead to a quantum pendulum, i.e. a sine Gordon bo-
son field model as first demonstrated by Coleman. The

physical principle involved is that Josephson effects occur
whenever the coherent quantum liquid is forced to flow
through weak links, quantum pendulum dynamics holds
sway.

We have begun what we hope will be a beginning of the
study of wireless electrodynamic communication between
biological cells starting with (say) bacteria or viruses that
have DNA or RNA within the cell nucleus. The basic
DNA and RNA microbe antennae must be wired in na-
ture as a biological community of coherent phased an-
tenna arrays for appreciable communication information
bit-rates radiated through large distances. Arrays of bi-
ological weak links might serve that purpose.
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