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J Benveniste had observed that highly dilute (and even in the 
absence of physical molecules) biological agents still triggered 
relevant biological systems. Some of these experiments were 

reproduced in three other laboratories Nature 333, 816 (1988). 
Further work, Medical Hypotheses 54, 33 (2000), showed that 

molecular activity in more than 50 biochemical systems and even in 
bacteria could be induced by electromagnetic signals transferred 
through water solutes. The sources of the electromagnetic signals 

were recordings of specific biological activities. 
These results suggest that electromagnetic transmission of 

biochemical information can be stored in the electric dipole 
moments of water in close analogy to the manner in which magnetic 

moments store information on a computer disk. The 
electromagnetic signals would enable in vivo transmissions of the 
specific molecular information between two functional biological 

molecules. The physical nature of such biological information 
storage and retrieval in ordered quantum electromagnetic domains 

of water will be explored.  



S=kB ln Ω

kB =1.3806503 × 10-16 erg/K
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Information Theory I
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Information Theory II

Statistical 
Information
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Shannon’s Theorem:

If a program is stored on an N bit device and if 
the a priori probability of the ith state in the 
device is pi with information bits N* >> 1, then 
the program can be “compressed” to fit onto an 
N* bit device with ever smaller coding error.  

true.holdstheoremShannonthe*As ∞→N



5/21/2008 Free Template from www.brainybetty.com 9

Information Theory III
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Memory in Pure Water
and Thermodynamics
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Information Theory IIIWater Thermodynamics I
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Information Theory IIIWater Thermodynamics II
Along the liquid-vapor 

coexistence curve the heat 
q of vaporization obeys
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Water Thermodynamics III
The information lost  ΔI when a molecule evaporates 

from the liquid into the vapor is as follows:
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The anomalously high heat of water vaporization 
implies an ordered state of water with a high 
information capacity per atom of  ~  one byte. 



Memory in the Genome
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Memory in DNA I
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Memory in DNA II

The human DNA polymer 
molecule is thought to 

contain an approximately 
3 gigabyte program. It is  

stored on an 
approximately 100 
gigabyte memory 

capacity polymer chain.  
The “unused” portion of 
the chain has been called 

“junk” DNA since its 
purpose is unknown.
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Memory in DNA III
The thermodynamic properties 

of a DNA polymer chain of 
length l per molecule under 

tension force τ may be 
described theoretically and 
experimentally (with optical 

tweezers) as follows:
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The thermodynamic analysis of 
the information capacity of the 
chain leads to ~ 30 kilobyte per 

meter in agreement with 
information analysis of the 

genome project if the “junk” is 
included as information.  
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Phase Transitions

Hysteretic RNA Transition
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Memory in DNA IV
C.M. Ajo-Franklin, D.A. Drubin, J.A. Eskin, E.P.S. Gee, D. Landgraf, I. Phillips 
and P.A. Silver,  Genes & Dev. 21, 2271 (2007)

A loop function (subroutine) was inserted into a 
DNA genetic program within a yeast cell. The 

modification of the DNA program was induced 
by exposure to galactose. After many cell 
divisions, the loop function (subroutine) 

remained intact without galactose nor without 
any other sort of molecular trigger.

Memory in Water
Highly dilute (and even in the 
absence of physical molecules) 
biological agents still trigger 
relevant biological systems.



Ordered Domains in Water

5/21/2008 20



5/21/2008 Free Template from www.brainybetty.com 21

Low Entropy Ordered Domains in Water I

Dipole Moment d

Water has coherent polarized 
domains of radius R~10 -5 cm. 
Some domains contain ionic 

impurity.  The memory of water 
and its information content is 

controlled by the polarized domain 
positions and by the diamagnetic 

magnetic field configurations.  
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Low Entropy Ordered Domains in Water II

Shown is a spherical sample of N
water molecules in a sphere of radius
R subject to an electric field at
frequency ω. The polarizability per
molecule of the spherical domain is
denoted by α(ω).
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Low Entropy Ordered Domains in Water III
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Liquids with ordered
polarized domains lie
above the line while
unordered liquids lie
below the line. The
line is determined by

α = 3v/4π
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Low Entropy Ordered Domains in Water IV

Two Energy Level Model and Collective Oscillations in the Domain
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A single molecule will 
exhibit an oscillation 
frequency as a pole in 
α(ω), i.e. at ω = ω0 .

A collective oscillation with 
N dipole moments will yield 
a lower frequency as a pole 

in ε(ω), i.e. at ω = Ω0 .
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Low Entropy Ordered Domains in Water V
Ferroelectric ordering in water domains may be expected to produce 
electric ordered clusters within water in the same manner  in which 

Ferromagnetic domains produce ordered clusters in ferrofluids.

under the application of 
a small static field
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Low Entropy Ordered Domains in Water VI

In ferrofluids with 
artificially made 

magnetic moment 
domains, as the 
concentration of 

such domains 
increases, the 

magnetic moments 
form networks of 

chains. 

Water contains electric dipole domains which arise out a polar 
liquid electrodynamics phase transition.  From the mathematical 

similarity between magnetic and electrical dipole field interactions, 
one would expect similar “trees” to form in pure water.
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Low Entropy Ordered Domains in Water VII

Water 
coherent 
domains 

repel 
alcohol.

Alcohol and water do not (really) mix! Illustration of the micro-
segregation that takes place in alcohol-water solutions, The 

hydroxyl group on the alcohol molecule prefers to bond to water 
molecules than to other alcohol molecules, giving rise to clusters 
of methyl groups in contact, surrounded by sheets and globules 

of hydrogen-bonded water molecules.

Water alcohol 
mixtures  

studied by 
neutron 

scattering.
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Low Entropy Ordered Domains in Water VIII

Computer Programs in 
the Form of decision 

“Trees”

Water domains differ in size and 
ionic content and have a high 

information tree content partly 
responsible for the high heat of 

vaporization.
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Low Entropy Ordered Domains in Water IX

A wireless connection to 
ordered dipole domains 
(and thereby programs) 

may be made via 
electromagnetic waves 

which shift the tree 
configurations.



Diamagnetic Water

5/21/2008 30



5/21/2008 Free Template from www.brainybetty.com 31

Diamagnetism in Water I

A small high temperature 
superconductor floats over a 

rare earth ferromagnetic slab. 

A small live frog floats over the 
coil endpoint fringing magnetic 

fields of a 16 Tesla Bitter magnet. 

Water and Superconductors 
both expel magnetic field lines.
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Diamagnetism in Water II

A water 
droplet gets 

pressed into a 
torus by  

magnetic field 
focused 

through the 
center.
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For a spherical water domain with Z electrons 
in a magnetic field with rotational symmetry 
about the magnetic field axis, one finds the 

diamagnetic energy 
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Diamagnetism in Water III

Water surface 
gets depressed 
by  a normal 

magnetic field .

Single water domain 
magnetic 

polarizability β
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almost perfect diamagnetism 
in a single domain 
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Diamagnetism in Water IV

The magnetic field is well expelled from the coherent polarized
water domains, yet water is only weakly diamagnetic. The magnetic
fields must thereby enter the water in filamentary magnetic flux
tubes in the normal regions of water. This is closely analogous to
how magnetic fields penetrate a type II superconductor as vortex
lines in the normal regions. Such flux tubes in water should be
visible in nuclear magnetic resonant imaging.

Experimental picture of 
Abrikosov magnetic flux tubes 

piercing through a type two 
superconducting surface.



Ions in Water Coherent Domains
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Ions in Water Coherent Domains I

The radius R of a 
coherent water 

domain depends on 
the charge q and the 
chemical nature of 
the contained ion. 

An atomic size ion (r~10-8 cm) will
pass through almost any hole in a
membrane. But if the ion has to drag
a coherent water domain (say about
R~10-5 cm), then the full balloon
might not make it through the
membrane channel.
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Ions in Water Coherent Domains II

The charged q=Ze ion may or (may not) make it
through a channel in a biological cell wall depending
on whether or not the radius R of the coherent
domain is too sizable.
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Ions in Water Coherent Domains III

Ionic Pathways 
into and out of 
Biological Cells
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Ions in Water Coherent Domains IV

The memory in the human brain is largely born of nerve cell codes from
environmental experience and not so much from intrinsic genome codes. But
nerve cells work by receiving ions into the body of the cell, sending a pulse
down the axon and expelling ions out of the terminal. The process starts all
over again for the next nerve cell.
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Ions in Water Coherent Domains V

Ion Channels into a Nerve Cell Body 
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Ions in Water Coherent Domains VI

Nerve Cell Network with Switching Nodes 
Depending on Ion Transport

Network

Node
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Ions in Water Coherent Domains VII

Dynamics of a Single Ion Transport 
Within a Coherent Water Domain 
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Ions in Water Coherent Domains VIII
The ionic magnetic m and electric d dipole moments may be 

written, respectively, as follows:
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The rate of change of angular momentum is thereby the torque.
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Summing over all of the ionic water domains yields the 
ionic driven magnetic resonance equation. 
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Ions in Water Coherent Domains IX

Ionic driven magnetic resonance equation will have a 
relation time τ which is not so short as to spoil the 

Larmor frequency ωL.
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The Larmor frequency can make its appearance as a 
resonant peak for magnetic fields of the form 
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Ions in Water Coherent Domains X

The conductance as a 
function of magnetic 

field modulation 
frequency gives rise to 
the magnetic Zhadin 
resonance peak at the 

Larmor frequency.
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Conclusions

• The ordering of water via coherent domains yields sufficient 
structure for memory capacity. 

• Statistical thermodynamics and thereby information theory 
supports this view.

• The information coding estimates of the genome project are in 
full agreement with the thermodynamic view

• Ionic motions are effected by ordered water domains and can 
serve as electronic switches in nerve cell networks. These form 
the basis of conscious human memory.

• Electrical polarization networks and the resulting filament 
magnetic flux tubes in pure water should be measureable 
employing magnetic resonance imaging. 
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